1-Stearoyl-3-oleoyl-rac-glycerol is a diacylglycerol that contains stearic acid at the sn-1 position and oleic acid at the sn-3 position. Intermittent fasting decreases skeletal muscle and hepatic levels of 1-stearoyl-3-oleoyl-rac-glycerol in New Zealand obese (NZO) mice.1 The concentration of 1-stearoyl-3-oleoyl-rac-glycerol decreases from 4.59 to 1.88% during the dry-curing process of Iberian ham.2References1. Baumeier, C., Kaiser, D., Heeren, J., et al. Caloric restriction and intermittent fasting alter hepatic lipid droplet proteome and diacylglycerol species and prevent diabetes in NZO mice. Biochim. Biophys. Acta 1851(5), 566-576 (2015).2. Narváez-Rivas, M., Vicario, I.M., Constante, E.G., et al. Changes in the concentrations of free fatty acid, monoacylglycerol, and diacylglycerol in the subcutaneous fat of Iberian ham during the dry-curing process. J. Agric. Food Chem. 55(26), 10953-10961 (2007). 1-Stearoyl-3-oleoyl-rac-glycerol is a diacylglycerol that contains stearic acid at the sn-1 position and oleic acid at the sn-3 position. Intermittent fasting decreases skeletal muscle and hepatic levels of 1-stearoyl-3-oleoyl-rac-glycerol in New Zealand obese (NZO) mice.1 The concentration of 1-stearoyl-3-oleoyl-rac-glycerol decreases from 4.59 to 1.88% during the dry-curing process of Iberian ham.2 References1. Baumeier, C., Kaiser, D., Heeren, J., et al. Caloric restriction and intermittent fasting alter hepatic lipid droplet proteome and diacylglycerol species and prevent diabetes in NZO mice. Biochim. Biophys. Acta 1851(5), 566-576 (2015).2. Narváez-Rivas, M., Vicario, I.M., Constante, E.G., et al. Changes in the concentrations of free fatty acid, monoacylglycerol, and diacylglycerol in the subcutaneous fat of Iberian ham during the dry-curing process. J. Agric. Food Chem. 55(26), 10953-10961 (2007).
Palmitic acid-13C is intended for use as an internal standard for the quantification of palmitic acid by GC- or LC-MS. Palmitic acid-13C contains 13C at the C2 position and has been used in the study of free fatty acid incorporation into phospholipid fatty acids in soil microbes.1 Palmitic acid is a 16-carbon saturated fatty acid. It comprises approximately 25% of human total plasma lipids.2 It increases protein levels of COX-2 in RAW 264.7 cells when used at a concentration of 75 μM.3 Palmitic acid is involved in the acylation of proteins to anchor membrane-bound proteins to the lipid bilayer.3,4,5,6,7
AAA is an antagonist of G protein-coupled receptor 75 (GPR75).1It increases basal GPR75 protein levels and inhibits 20-HETE-induced reductions in GPR75 protein levels in PC3 cells. AAA (5 and 10 μM) also reduces 20-HETE-induced phosphorylation of EGFR, NF-κB, and Akt in, and cell migration of, PC3 cells.In vivo, AAA (10 mg/kg per day) reduces systolic blood pressure, albuminuria, renal angiotensin II levels, and cardiac hypertrophy in a Cyp1a1-Ren-2 transgenic rat model of malignant hypertension when administered prior to induction or after establishment of hypertension.2 1.Cárdenas, S., Colombero, C., Panelo, L., et al.GPR75 receptor mediates 20-HETE-signaling and metastatic features of androgen-insensitive prostate cancer cellsBiochim. Biophys. Acta Mol. Cell Biol. Lipids1865(2)158573(2020) 2.Sedláková, L., Kikerlová, S., Husková, Z., et al.20-Hydroxyeicosatetraenoic acid antagonist attenuates the development of malignant hypertension and reverses it once established: a study in Cyp1a1-Ren-2 transgenic ratsBiosci. Rep.38(5)BSR20171496(2018)
Pal-KTTKS is a lipidated pentapeptide consisting of a fragment of the type I collagen C-terminal propeptide conjugated to palmitic acid .1 It increases collagen production in human corneal and dermal fibroblasts when used at concentrations of 0.002, 0.004, and 0.008 wt%.2 Following topical administration, pal-KTTKS (50 μg/cm2) is found in the stratum corneum, epidermis, and dermis of isolated hairless mouse skin.1 It can self-assemble into flat tapes and extended fibrillar structures.3 Pal-KTTKS has been detected in anti-wrinkle creams.4 |1. Choi, Y.L., Park, E.J., Kim, E., et al. Dermal stability and in vitro skin permeation of collagen pentapeptides (KTTKS and palmitoyl-KTTKS). Biomol. Ther. (Seoul) 22(4), 321-327 (2014).|2. Jones, R.R., Castelletto, V., Connon, C.J., et al. Collagen stimulating effect of peptide amphiphile C16-KTTKS on human fibroblasts. Mol. Pharm. 10(3), 1063-1069 (2013).|3. Castelletto, V., Hamley, I.W., Whitehouse, C., et al. Self-assembly of palmitoyl lipopeptides used in skin care products. Langmuir 29(29), 9149-9155 (2013).|4. Chirita, R.-I., Chaimbbault, P., Archambault, J.-C., et al. Development of a LC-MS/MS method to monitor palmitoyl peptides content in anti-wrinkle cosmetics. Anal. Chim. Acta 641(1-2), 95-100 (2009).
Mesalamine impurity P is an impurity of Mesalamine . 5-Aminosalicylic acid (Mesalamine) acts as a specific PPARγ agonist and also inhibits p21-activated kinase 1 (PAK1) and NF-κB[1]. [1]. Kyle Dammann, et al.PAK1 modulates a PPARγ NF-κB cascade in intestinal inflammation.Biochim Biophys Acta. 2015 Oct;1853(10 Pt A):2349-60.
9(S),12(S),13(S)-TriHOME is a linoleic acid-derived oxylipin that has diverse biological activities.1,2,3,4It has been found in various plants and is produced in human eosinophils in a 15-lipoxygenase-dependent, soluble epoxide hydrolase-independent manner.1,59(S),12(S)13(S)-TriHOME inhibits antigen-induced β-hexosaminidase release from RBL-2H3 mast cells (IC50= 28.7 μg ml).2It inhibits LPS-induced nitric oxide (NO) production in BV-2 microglia (IC50= 40.95 μM).3In vivo, 9(S),12(S),13(S)-TriHOME (1 g animal) enhances the antiviral IgA and IgG antibody responses induced by a nasal influenza hemagglutinin (HA) vaccine by 5.2- and 2-fold, respectively, in mice.4 1.Hamberg, M., and Hamberg, G.Peroxygenase-catalyzed fatty acid epoxidation in cereal seeds: Sequential oxidation of linoleic acid into 9(S),12(S),13(S)-trihydroxy-10(E)-octadecenoic acidPlant Physiol.110(3)807-815(1996) 2.Hong, S.S., and Oh, J.S.Inhibitors of antigen-induced degranulation of RBL-2H3 cells isolated from wheat branJ. Korean Soc. Appl. Biol. Chem.5569-74(2012) 3.Kim, C.S., Kwon, O.W., Kim, S.Y., et al.Five new oxylipins from Chaenomeles sinensisLipids49(11)1151-1159(2014) 4.Shirahata, T., Sunazuka, T., Yoshida, K., et al.Total synthesis, elucidation of absolute stereochemistry, and adjuvant activity of trihydroxy fatty acidsTetrahedron62(40)9483-9496(2006) 5.Fuchs, D., Tang, X., Johnsson, A.-K., et al.Eosinophils synthesize trihydroxyoctadecenoic acids (TriHOMEs) via a 15-lipoxygenase dependent processBiochim. Biophys. Acta Mol. Cell Biol. Lipids1865(4)158611(2020)
PROTAC IDO1 Degrader-1 is the first potent IDO1 (indoleamine 2,3-dioxygenase 1) degrader that hijacks IDO1 to CRBN E3 ligase to introduce IDO1 into UPS and eventually achieve ubiquitination and degradation (DC50=2.84 μM). PROTAC IDO1 Degrader-1 moderately improves the tumor-killing activity of H ER2 CAR-T cells[1]. PROTAC IDO1 Degrader-1 (compound 2c) (10 μM; 24 hours) notably decreases IDO1 level induced by IFN-γ[1].PROTAC IDO1 Degrader-1 and IFN-γ (5 ng mL) are incubated with HeLa cells for 24 h, and a significant dose-dependent degradation is observed. PROTAC IDO1 Degrader-1 combined with chimeric antigen receptor-modified T (CAR-T) cells can improve the tumor-killing activity of HER-2 CAR-T cells[1].PROTAC IDO1 Degrader-1 induces significant and persistent degradation of IDO1 with maximum degradation (dmax) of 93% in HeLa cells[1]. [1]. Hu M, et al. Discovery of the first potent proteolysis targeting chimera (PROTAC) degrader of indoleamine 2,3-dioxygenase 1. Acta Pharm Sin B. 2020;10(10):1943-1953.
5-Hydroxytoluene-2,4-disulphonic acid diammonium is an impurity of Policresulen. Policresulen is a potent NS2B NS3 protease inhibitor with an IC50 of 0.48 μg mL. Policresulen effectively inhibits the replication of DENV2 virus in BHK-21 cells with an IC50 of 4.99 μg mL. Policresulen acted as a competitive inhibitor of the protease, and slightly affected the protease stability[1]. [1]. Deng-wei Wu, et al. Policresulen, a novel NS2B NS3 protease inhibitor, effectively inhibits the replication of DENV2 virus in BHK-21 cells. Acta Pharmacol Sin. 2015 Sep;36(9):1126-36.
MIT-PZR is a mitochondria-targeted fluorescent probe.1It is aggregation-induced emission (AIE) active and displays absorption/emission maxima of 485/705 nm, respectively. MIT-PZR can be used in live cells andin vivo. 1.Dong, Y., Chen, Z., Hou, L., et al.Mitochondria-targeted aggregation-induced emission active near infrared fluorescent probe for real-time imagingSpectrochim. Acta. A. Mol. Biomol. Spectrosc.224117456(2019)
DW532 is one of simplified analogues of hematoxylin that has shown broad-spectrum inhibition on tyrosine kinases and in vitro anti-cancer activities. DW532 inhibited EGFR and VEGFR2 in vitro kinase activity (the IC50 values were 4.9 and 5.5 μmol L, respectively), and suppressed their downstream signaling. DW532 dose-dependently inhibited tubulin polymerization via direct binding to tubulin, thus disrupting the mitotic spindle assembly and leading to abnormal cell division. In a panel of human cancer cells, DW532 (1 and 10 μmol L) induced G2 M phase arrest and cell apoptosis, which subsequently resulted in cytotoxicity. Knockdown of BubR1 or Mps1, the two core proteins of the spindle assembly checkpoint dramatically decreased DW532-induced cell cycle arrest in MDA-MB-468 cells. Moreover, treatment with DW532 potently and dose-dependently suppressed angiogenesis in vitro and in vivo. ( Acta Pharmacol Sin. 2014 Jul;35(7):916-28.)