Nemorosone is a polycyclic polyprenylated acylphloroglucinol (PPAP) originally isolated from C. rosea that has antiproliferative properties.1 Nemorosone inhibits growth of NB69, Kelly, SK-N-AS, and LAN-1 neuroblastoma cells (IC50s = 3.1-6.3 μM), including several drug-resistant clones, but not MRC-5 human embryonic fibroblasts (IC50 = >40 μM).2 It increases DNA fragmentation in LAN-1 cells in a dose-dependent manner, and decreases N-Myc protein levels and phosphorylation of ERK1 2 by MEK1 2. Nemorosone also inhibits growth of Capan-1, AsPC-1, and MIA-PaCa-2 pancreatic cancer cells (IC50s = 4.5-5.0 μM following a 72-hour treatment) but not human dermal and foreskin fibroblasts (IC50s = >35 μM).1 It induces apoptosis, abolishes the mitochondrial membrane potential, and increases cytosolic calcium concentration in pancreatic cancer cells in a dose-dependent manner. Nemorosone activates the caspase cascade in a dose-dependent manner and inhibits cell cycle progression, increasing the proportion of cells in the G0 G1 phase, in both neuroblastoma and pancreatic cancer cells.1,2 Nemorosone (50 mg kg, i.p., per day) also reduces tumor growth in an MIA-PaCa-2 mouse xenograft model.3References1. Holtrup, F., Bauer, A., Fellenberg, K., et al. Microarray analysis of nemorosone-induced cytotoxic effects on pancreatic cancer cells reveals activation of the unfolded protein response (UPR). Br. J. Pharmacol. 162(5), 1045-1059 (2011).2. Díaz-Carballo, D., Malak, S., Bardenheuer, W., et al. Cytotoxic activity of nemorosone in neuroblastoma cells. J. Cell. Mol. Med. 12(6B), 2598-2608 (2008).3. Wold, R.J., Hilger, R.A., Hoheisel, J.D., et al. In vivo activity and pharmacokinetics of nemorosone on pancreatic cancer xenografts. PLoS One 8(9), e74555 (2013). Nemorosone is a polycyclic polyprenylated acylphloroglucinol (PPAP) originally isolated from C. rosea that has antiproliferative properties.1 Nemorosone inhibits growth of NB69, Kelly, SK-N-AS, and LAN-1 neuroblastoma cells (IC50s = 3.1-6.3 μM), including several drug-resistant clones, but not MRC-5 human embryonic fibroblasts (IC50 = >40 μM).2 It increases DNA fragmentation in LAN-1 cells in a dose-dependent manner, and decreases N-Myc protein levels and phosphorylation of ERK1 2 by MEK1 2. Nemorosone also inhibits growth of Capan-1, AsPC-1, and MIA-PaCa-2 pancreatic cancer cells (IC50s = 4.5-5.0 μM following a 72-hour treatment) but not human dermal and foreskin fibroblasts (IC50s = >35 μM).1 It induces apoptosis, abolishes the mitochondrial membrane potential, and increases cytosolic calcium concentration in pancreatic cancer cells in a dose-dependent manner. Nemorosone activates the caspase cascade in a dose-dependent manner and inhibits cell cycle progression, increasing the proportion of cells in the G0 G1 phase, in both neuroblastoma and pancreatic cancer cells.1,2 Nemorosone (50 mg kg, i.p., per day) also reduces tumor growth in an MIA-PaCa-2 mouse xenograft model.3 References1. Holtrup, F., Bauer, A., Fellenberg, K., et al. Microarray analysis of nemorosone-induced cytotoxic effects on pancreatic cancer cells reveals activation of the unfolded protein response (UPR). Br. J. Pharmacol. 162(5), 1045-1059 (2011).2. Díaz-Carballo, D., Malak, S., Bardenheuer, W., et al. Cytotoxic activity of nemorosone in neuroblastoma cells. J. Cell. Mol. Med. 12(6B), 2598-2608 (2008).3. Wold, R.J., Hilger, R.A., Hoheisel, J.D., et al. In vivo activity and pharmacokinetics of nemorosone on pancreatic cancer xenografts. PLoS One 8(9), e74555 (2013).
Ajoene is a disulfide that has been found inA. sativumand has diverse biological activities, including antibacterial, anticancer, antiplatelet, and antioxidant properties.1,2,3,4It is active against Gram-positive (MICs = 5-160 µg ml) and Gram-negative bacteria (MICs = 136-200 µg ml), as well as yeasts (MICs = 10-20 µg ml).1Ajoene is cytotoxic to mouse melanoma cells (IC50= 18 µM), as well as human colon, lung, mammary, and pancreatic cancer cells (IC50s = 7-41 µM).2It reduces tumor growth in a B16 BL6 mouse model of melanoma when administered at a dose of 25 mg kg every other day and decreases the number of lung metastases when administered prior to tumor cell inoculation at doses ranging from 1-25 mg kg. It inhibits ADP- or collagen-induced platelet aggregation in isolated baboon platelets when used at concentrations ranging from 75 to 150 µg ml and in platelet-rich plasma isolated from baboons when administered at a dose of 25 mg kg.3Ajoene (25 mg kg) prevents thrombus formation on damaged arterial walls in heparinized pigs in anin situmodel of thrombogenesis.5It also reduces high-fat diet-induced hepatic steatosis, histopathological markers of liver damage, thiobarbituric acid reactive substances (TBARS) formation, and protein oxidation in a mouse model of non-alcoholic fatty liver disease (NAFLD).4 1.Naganawa, R., Iwata, N., Ishikawa, K., et al.Inhibition of microbial growth by ajoene, a sulfur-containing compound derived from garlicAppl. Environ. Microbiol.62(11)4238-4242(1996) 2.Taylor, P., Noriega, R., Farah, C., et al.Ajoene inhibits both primary tumor growth and metastasis of B16 BL6 melanoma cells in C57BL 6 miceCancer Lett.239(2)298-304(2006) 3.Teranishi, K., Apitz-Castro, R., Robson, S.C., et al.Inhibition of baboon platelet aggregation in vitro and in vivo by the garlic derivative, ajoeneXenotransplantation10(4)374-379(2003) 4.Han, C.Y., Ki, S.H., Kim, Y.W., et al.Ajoene, a stable garlic by-product, inhibits high fat diet-induced hepatic steatosis and oxidative injury through LKB1-dependent AMPK activationAntioxid. Redox Signal.14(2)187-202(2011) 5.Apitz-Castro, R., Badimon, J.J., and Badimon, L.A garlic derivative, ajoene, inhibits platelet deposition on severely damaged vessel wall in an in vivo porcine experimental modelThromb. Res.75(3)243-249(1994)
Deltorphin II is a peptide agonist of δ2-opioid receptors.1,2It is selective for δ-opioid receptors over μ- and κ-opioid receptors in radioligand bindings assays (Kis = 0.0033, >1, and >1 μM, respectively) and induces [35S]GTPγS binding in mouse brain membrane preparations (EC50= 0.034 μM). Deltorphin II (0.12 mg kg) decreases the infarction zone:risk zone ratio in a rat model of myocardial ischemia-reperfusion injury induced by coronary occlusion, an effect that can be reversed by the δ2-opioid receptor antagonist naltriben but not the δ1-opioid receptor antagonist BNTX.3Intrathecal administration of deltorphin II (15 μg animal) increases latency to withdraw in the paw pressure and tail-flick tests in rats.4 1.Raynor, K., Kong, H., Chen, Y., et al.Pharmacological characterization of the cloned κ-, δ-, and μ-opioid receptorsMol. Pharm.45(2)330-334(1994) 2.Scherrer, G., Befort, K., Contet, C., et al.The delta agonists DPDPE and deltorphin II recruit predominantly mu receptors to produce thermal analgesia: A parallel study of mu, delta and combinatorial opioid receptor knockout miceEur. J. Neurosci.19(8)2239-2248(2004) 3.Maslov, L.N., Barzakh, E.I., Krylatov, A.V., et al.Opioid peptide deltorphin II simulates the cardioprotective effect of ischemic preconditioning: role of δ2-opioid receptors, protein kinase C, and KATP channelsBull. Exp. Biol. Med.149(5)591-593(2010) 4.Labuz, D., Toth, G., Machelska, H., et al.Antinociceptive effects of isoleucine derivatives of deltorphin I and deltorphin II in rat spinal cord: A search for selectivity of delta receptor subtypesNeuropeptides32(6)511-517(1998)
Palmitic acid-13C is intended for use as an internal standard for the quantification of palmitic acid by GC- or LC-MS. Palmitic acid is a 16-carbon saturated fatty acid. It comprises approximately 25% of human total plasma lipids.1 It increases protein levels of COX-2 in RAW 264.7 cells when used at a concentration of 75 μM.2 Palmitic acid is involved in the acylation of proteins to anchor membrane-bound proteins to the lipid bilayer.2,3,4,5,6 |1. Santos, M.J., López-Jurado, M., Llopis, J., et al. Influence of dietary supplementation with fish oil on plasma fatty acid composition in coronary heart disease patients. Ann. Nutr. Metab. 39(1), 52-62 (1995).|2. Lee, J.Y., Sohn, K.H., Rhee, S.H., et al. Saturated fatty acids, but not unsaturated fatty acids, induced the expression of cyclooxygenase-2 mediated through toll-like receptor 4. J. Biol. Chem. 276(20), 16683-16689 (2001).|3. Dietzen, D.J., Hastings, W.R., and Lublin, D.M. Caveolin is palmitoylated on multiple cysteine residues. Palmitoylation is not necessary for localization of caveolin to caveolae. J. Biol. Chem. 270(12), 6838-6842 (1995).|4. Robinson, L.J., and Michel, T. Mutagenesis of palmitoylation sites in endothelial nitric oxide synthase identifies a novel motif for dual acylation and subcellular targeting. Proc. Nat. Acad. Sci. USA 92(25), 11776-11780 (1995).|5. Topinka, J.R., and Bredt, D.S. N-terminal palmitoylation of PSD-95 regulates association with cell membranes and interaction with K+ channel Kv1.4. Neuron 20(1), 125-134 (1998).|6. Miggin, S.M., Lawler, O.A., and Kinsella, B.T. Palmitoylation of the human prostacyclin receptor. Functional implications of palmitoylation and isoprenylation. J. Biol. Chem. 278(9), 6947-6958 (2003).
Ansatrienin B is an ansamycin antibiotic and antifungal agent first isolated from S. collinus and S. rishiriensis., In fetal rat long bones, it is an inhibitor of parathyroid hormone-induced calcium release (IC50 = 21 nM), which is a measure of bone resorption, and pp60c-src kinase (IC50 = 50 nM). It is an inhibitor of translation at the protein synthesis stage by specific inhibition of L-leucine incorporation (IC50 = 58 nM in A549 cells). It also inhibits TNF-α-induced expression of intercellular adhesion molecule-1 (ICAM-1; IC50 = 300 nM). Early in vitro studies showed that ansatrienin B potentiates the chemotherapeutic action of 5-fluorouracil , cisplatin , bleomycin , mitomycin C , and 6-mercaptopurine. Ansatrienin B is a hydroquinone form of ansatrienin A .
AAA is an antagonist of G protein-coupled receptor 75 (GPR75).1It increases basal GPR75 protein levels and inhibits 20-HETE-induced reductions in GPR75 protein levels in PC3 cells. AAA (5 and 10 μM) also reduces 20-HETE-induced phosphorylation of EGFR, NF-κB, and Akt in, and cell migration of, PC3 cells.In vivo, AAA (10 mg/kg per day) reduces systolic blood pressure, albuminuria, renal angiotensin II levels, and cardiac hypertrophy in a Cyp1a1-Ren-2 transgenic rat model of malignant hypertension when administered prior to induction or after establishment of hypertension.2 1.Cárdenas, S., Colombero, C., Panelo, L., et al.GPR75 receptor mediates 20-HETE-signaling and metastatic features of androgen-insensitive prostate cancer cellsBiochim. Biophys. Acta Mol. Cell Biol. Lipids1865(2)158573(2020) 2.Sedláková, L., Kikerlová, S., Husková, Z., et al.20-Hydroxyeicosatetraenoic acid antagonist attenuates the development of malignant hypertension and reverses it once established: a study in Cyp1a1-Ren-2 transgenic ratsBiosci. Rep.38(5)BSR20171496(2018)
Palmitic acid-13C is intended for use as an internal standard for the quantification of palmitic acid by GC- or LC-MS. Palmitic acid-13C contains 13C at the C2 position and has been used in the study of free fatty acid incorporation into phospholipid fatty acids in soil microbes.1 Palmitic acid is a 16-carbon saturated fatty acid. It comprises approximately 25% of human total plasma lipids.2 It increases protein levels of COX-2 in RAW 264.7 cells when used at a concentration of 75 μM.3 Palmitic acid is involved in the acylation of proteins to anchor membrane-bound proteins to the lipid bilayer.3,4,5,6,7
5(S),12(S)-DiHETE is a natural bioactive lipid derived from arachidonic acid . It is synthesized by glycogen-induced rabbit peritoneal polymorphonuclear leukocytes (PMNLs) incubated with AA. 5(S),12(S)-DiHETE can be produced by successive oxygenation of AA by 5-lipoxygenase (5-LO) in platelets and 12-LO in leukocytes. It can also be synthesized from 12(S)-HETE by 5-LO, in the presence of 5-LO activating protein (FLAP), activated with calcium ionophore. 5(S),12(S)-DiHETE is an epimer of leukotriene B4 that is weakly chemotactic for PMNL.
N-Arachidonoyl-L-serine (ARA-S), a recently isolated endocannabinoid with a distinct activity profile that diverges from typical endocannabinoids, does not interact with central cannabinoid (CB1), peripheral cannabinoid (CB2) receptors, or vanilloid receptor 1 (VR1). Unlike other compounds, ARA-S (5 mg kg) counteracts the lowering of blood pressure induced by a 10 mg kg intravenous bolus of abnormal cannabidiol (Abn-CBD) in anesthetized rat models. Additionally, akin to Abn-CBD, ARA-S induces relaxation in isolated rat mesenteric arteries and abdominal aorta and promotes phosphorylation of Akt and mitogen-activated protein kinase (MAPK) in human umbilical vein endothelial cells (HUVEC). The mechanisms through which ARA-S and Abn-CBD exert their effects on vascular systems show variations and merit deeper investigation.