Cyclic-di-GMP is a STING agonist and ubiquitous second messenger, which regulates the formation, motility and virulence of biofilms in various bacterial species.
Ademetionine (S-adenosylmethionine; SAMe) is a ubiquitous metabolite present in all cells and biological fluids, and serves as a methyl donor in a multitude of different methylation reactions involving proteins, phospholipids, catecholamines and DNA.
Glutathione can occur in reduced (GSH), oxidized (GSSG), or in mixed disulfide forms and is ubiquitous in multiple biological systems serving as the major thiol-disulfide redox buffer of the cell. GSSG is the oxidized form of GSH . It can be reduced back to GSH through the NADPH-dependent enzyme glutathione reductase. GSSG functions as a hydrogen acceptor in the enzymatic determination of NADP+ and NADPH and can be a proximal donor in S-glutathionylation post translational modifications. The ratio of reduced glutathione to oxidized glutathione within cells is often used as an indicator of oxidative stress, with higher concentrations of GSSG predicting increased oxidative stress.
The metallo-protein Cu/Zn-superoxide dismutase (SOD1) is a ubiquitous enzyme responsible for scavenging superoxide radicals. Mutations in SOD1, which alter its metal binding capacity and can result in protein misfolding and aggregation, have been linked to familial amyotrophic lateral sclerosis (ALS). Cu-ATSM is an orally bioavailable, blood-brain barrier permeable complex that has traditionally been used in cellular imaging experiments to selectively label hypoxic tissue via its susceptibility to reduction by oxygen-depleted mitochondria. More recently, Cu-ATSM has been reported to improve locomotor function and survival in a transgenic ALS mouse model by delivering copper specifically to cells in the spinal cords of mice producing misfolded SOD1 proteins. Copper chaperone for SOD (CCS) is presumed to utilize the copper from Cu-ATSM to prevent misfolding of the SOD1 protein.
The A1, A2A, A2B, and A3 adenosine receptors (ARs) are ubiquitous G protein-coupled receptors. The four AR subtypes have been implicated in several areas of therapeutic interest such as stroke and other ischemic conditions, as well as inflammation, neurodegenerative diseases, diabetes, and sleep regulation. A3 AR antagonists are of interest as therapeutic agents in glaucoma agents and inflammation. CAY10498 is a potent and selective A3 AR antagonist exhibiting a Ki of 37 nM with 60 and 200-fold selectivity over A1 and A2A adenosine receptors, respectively. CAY10498 is also a structural analog of reversine, a dedifferentiation agent of embryonic progenitor cells. However, no dedifferentiation effects or any connection between A3 AR antagonism and dedifferentiation have been demonstrated.
SLP120701 is a potent and selective sphingosine kinase 2 inhibitor. Sphingosine-1-phosphate (S1P) is a ubiquitous, endogenous small molecule that is synthesized by two isoforms of sphingosine kinase (SphK1 and 2). Intervention of the S1P signaling pathway has attracted significant attention because alteration of S1P levels is linked to several disease states including cancer, fibrosis, and sickle cell disease.
SLR080811 is a SphK inhibitor. Sphingosine-1-phosphate (S1P) is a ubiquitous, endogenous small molecule that is synthesized by two isoforms of sphingosine kinase (SphK1 and 2). Intervention of the S1P signaling pathway has attracted significant attention because alteration of S1P levels is linked to several disease states including cancer, fibrosis, and sickle cell disease.
VT-ME6 is a potent and selective sphingosine kinase 2 inhibitor. VT-ME6, contained a quaternary ammonium group as a warhead and established that a positively charged moiety is necessary for engaging key amino acid residues in the enzyme binding pocket.13,14 This compound is moderately potent (Ki = 8 lM) and displays three-fold selectivity for SphK2 over SphK1. Sphingosine-1-phosphate (S1P) is a ubiquitous, endogenous small molecule that is synthesized by two isoforms of sphingosine kinase (SphK1 and 2). Intervention of the S1P signaling pathway has attracted significant attention because alteration of S1P levels is linked to several disease states including cancer, fibrosis, and sickle cell disease.