VPC03090 is a Sphingosine-1-Phosphate Receptor Inhibitor. VPC03090 is an analog of FTY-720, acts as antagonist for S1PR1 and S1PR3. VPC03090-P, converted from VPC03090 through the phosphorylation by SK-2, causes a reduction in tumor growth in mice with mammary cancer, and its oral bioavailability is determined to be 30 hours.
GSK-1264 is an allosteric inhibitor of human immunodeficiency virus (HIV) integrase which blocks viral replication and abnormal multimerization involving specific protein domains.
2-deoxy-D-Glucose-13C6is intended for use as an internal standard for the quantification of 2-deoxy-D-glucose by GC- or LC-MS. 2-deoxy-D-Glucose is a glucose antimetabolite and an inhibitor of glycolysis.1,2It inhibits hexokinase, the enzyme that converts glucose to glucose-6-phosphate, as well as phosphoglucose isomerase, the enzyme that converts glucose-6-phosphate to fructose-6-phosphate.32-deoxy-D-Glucose (16 mM) induces apoptosis in SK-BR-3 cells, as well as inhibits the growth of 143B osteosarcoma cells cultured under hypoxic conditions when used at a concentration of 2 mg ml.4,5In vivo, 2-deoxy-D-glucose (500 mg kg) reduces tumor growth in 143B osteosarcoma and MV522 non-small cell lung cancer mouse xenograft models when used alone or in combination with doxorubicin or paclitaxel .6 1.Kang, H.T., and Hwang, E.S.2-Deoxyglucose: An anticancer and antiviral therapeutic, but not any more a low glucose mimeticLife Sci.78(12)1392-1399(2006) 2.Aft, R.L., Zhang, F.W., and Gius, D.Evaluation of 2-deoxy-D-glucose as a chemotherapeutic agent: Mechanism of cell deathBr. J. Cancer87(7)805-812(2002) 3.Ralser, M., Wamelink, M.M., Struys, E.A., et al.A catabolic block does not sufficiently explain how 2-deoxy-D-glucose inhibits cell growthProc. Natl. Acad. Sci. USA105(46)17807-17811(2008) 4.Liu, H., Savaraj, N., Priebe, W., et al.Hypoxia increases tumor cell sensitivity to glycolytic inhibitors: A strategy for solid tumor therapy (Model C)Biochem. Pharmacol.64(12)1745-1751(2002) 5.Zhang, X.D., Deslandes, E., Villedieu, M., et al.Effect of 2-deoxy-D-glucose on various malignant cell lines in vitroAnticancer Res.26(5A)3561-3566(2006) 6.Maschek, G., Savaraj, N., Priebe, W., et al.2-deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivoCancer Res.64(1)31-34(2004)
Nemorosone is a polycyclic polyprenylated acylphloroglucinol (PPAP) originally isolated from C. rosea that has antiproliferative properties.1 Nemorosone inhibits growth of NB69, Kelly, SK-N-AS, and LAN-1 neuroblastoma cells (IC50s = 3.1-6.3 μM), including several drug-resistant clones, but not MRC-5 human embryonic fibroblasts (IC50 = >40 μM).2 It increases DNA fragmentation in LAN-1 cells in a dose-dependent manner, and decreases N-Myc protein levels and phosphorylation of ERK1 2 by MEK1 2. Nemorosone also inhibits growth of Capan-1, AsPC-1, and MIA-PaCa-2 pancreatic cancer cells (IC50s = 4.5-5.0 μM following a 72-hour treatment) but not human dermal and foreskin fibroblasts (IC50s = >35 μM).1 It induces apoptosis, abolishes the mitochondrial membrane potential, and increases cytosolic calcium concentration in pancreatic cancer cells in a dose-dependent manner. Nemorosone activates the caspase cascade in a dose-dependent manner and inhibits cell cycle progression, increasing the proportion of cells in the G0 G1 phase, in both neuroblastoma and pancreatic cancer cells.1,2 Nemorosone (50 mg kg, i.p., per day) also reduces tumor growth in an MIA-PaCa-2 mouse xenograft model.3References1. Holtrup, F., Bauer, A., Fellenberg, K., et al. Microarray analysis of nemorosone-induced cytotoxic effects on pancreatic cancer cells reveals activation of the unfolded protein response (UPR). Br. J. Pharmacol. 162(5), 1045-1059 (2011).2. Díaz-Carballo, D., Malak, S., Bardenheuer, W., et al. Cytotoxic activity of nemorosone in neuroblastoma cells. J. Cell. Mol. Med. 12(6B), 2598-2608 (2008).3. Wold, R.J., Hilger, R.A., Hoheisel, J.D., et al. In vivo activity and pharmacokinetics of nemorosone on pancreatic cancer xenografts. PLoS One 8(9), e74555 (2013). Nemorosone is a polycyclic polyprenylated acylphloroglucinol (PPAP) originally isolated from C. rosea that has antiproliferative properties.1 Nemorosone inhibits growth of NB69, Kelly, SK-N-AS, and LAN-1 neuroblastoma cells (IC50s = 3.1-6.3 μM), including several drug-resistant clones, but not MRC-5 human embryonic fibroblasts (IC50 = >40 μM).2 It increases DNA fragmentation in LAN-1 cells in a dose-dependent manner, and decreases N-Myc protein levels and phosphorylation of ERK1 2 by MEK1 2. Nemorosone also inhibits growth of Capan-1, AsPC-1, and MIA-PaCa-2 pancreatic cancer cells (IC50s = 4.5-5.0 μM following a 72-hour treatment) but not human dermal and foreskin fibroblasts (IC50s = >35 μM).1 It induces apoptosis, abolishes the mitochondrial membrane potential, and increases cytosolic calcium concentration in pancreatic cancer cells in a dose-dependent manner. Nemorosone activates the caspase cascade in a dose-dependent manner and inhibits cell cycle progression, increasing the proportion of cells in the G0 G1 phase, in both neuroblastoma and pancreatic cancer cells.1,2 Nemorosone (50 mg kg, i.p., per day) also reduces tumor growth in an MIA-PaCa-2 mouse xenograft model.3 References1. Holtrup, F., Bauer, A., Fellenberg, K., et al. Microarray analysis of nemorosone-induced cytotoxic effects on pancreatic cancer cells reveals activation of the unfolded protein response (UPR). Br. J. Pharmacol. 162(5), 1045-1059 (2011).2. Díaz-Carballo, D., Malak, S., Bardenheuer, W., et al. Cytotoxic activity of nemorosone in neuroblastoma cells. J. Cell. Mol. Med. 12(6B), 2598-2608 (2008).3. Wold, R.J., Hilger, R.A., Hoheisel, J.D., et al. In vivo activity and pharmacokinetics of nemorosone on pancreatic cancer xenografts. PLoS One 8(9), e74555 (2013).
3-O-(E)-p-coumaroyl tormentic acid may be promising lead compound for developing an effective drug for treatment of leukemia, it induces apoptotic cell death in human leukemia (HL60) via mainly mitochondrial pathway by, at least in part, Topo I inhibition. 3-O-trans-p-coumaroyltormentic acid shows cytotoxicity against four human tumor cell lines (A549, SK-OV-3, SK-MEL-2, and HCT-15) in vitro, the IC50 values of 13.72, 14.29,14.61, 14.04 uM, respectively. 3beta-O-cis-p-Coumaroyltormentic acid, and 3beta-O-trans-p-coumaroyltormentic acid are weakly selective for vancomycin-resistant Enterococcus (VRE) compared with eukaryotic cells, with an MIC of 59.4microg mL and a 50% inhibitory concentration (IC50) of 72.0microg mL for monkey kidney epithelial (MA104) cells. A mixture of 3-O-cis-p-coumaroyltormentic acid and 3-O-trans-p-coumaroyltormentic acid shows an inhibitory effect comparable to (-)-epigallocatechin gallate (EGCG) of green tea on the activation of Epstein-Barr virus early antigen (EBV-EA) induced by 12-O-tetradeca--noylphorbol-13-acetate (TPA).
C4 Ceramide is a bioactive sphingolipid and cell-permeable analog of naturally occurring ceramides. [1] [2] [3] It inhibits IL-4 production by 16% in EL4 T cells stimulated with phorbol 12-myristate 13-acetate when used at a concentration of 10 μM. [1] C4 Ceramide is cytotoxic to SK-BR-3 and MCF-7 Adr breast cancer cells (IC50s = 15.9 and 19.9 μM, respectively). [2] C4 Ceramide also increases maturation and stability of cystic fibrosis transmembrane conductance regulator (CFTR) proteins bearing the F508 deletion (F508del) mutation, enhances cAMP-activated chloride secretion, and suppresses secretion of IL-8 in primary epithelial cells isolated from patients with cystic fibrosis.[3]
Nocardamine is a ferrioxamine siderophore that has been found inStreptomycesand has diverse biological activities.1,2,3,4It chelates iron in a chrome azurol S assay (IC50= 9.9 μM).1Nocardamine inhibitsM. smegmatisandM. bovisbiofilm formation (MIC = 10 μM for both), an effect that can be reversed by iron.2It is cytotoxic to T47D, SK-MEL-5, SK-MEL-28, and RPMI-7951 cancer cells (IC50s = 6, 18, 12, and 14 μM, respectively).3Nocardamine also induces morphological changes in BM-N4 insect cells.4 1.Lopez, J.A.V., Nogawa, T., Futamura, Y., et al.Nocardamin glucuronide, a new member of the ferrioxamine siderophores isolated from the ascamycin-producing strain Streptomyces sp. 80H647J. Antibiot. (Tokyo)72(12)991-995(2019) 2.Ishida, S., Arai, M., Niikawa, H., et al.Inhibitory effect of cyclic trihydroxamate siderophore, desferrioxamine E, on the biofilm formation of Mycobacterium speciesBiol. Pharm. Bull.34(6)917-920(2011) 3.Kalinovskaya, N.I., Romaneko, L.A., Irisawa, T., et al.Marine isolate Citricoccus sp. KMM 3890 as a source of a cyclic siderophore nocardamine with antitumor activityMicrobiol. Res.166(8)654-661(2011) 4.Matsubara, K., Sakuda, S., Tanaka, M., et al.Morphological changes in insect BM-N4 cells induced by nocardamineBiosci. Biotechnol. Biochem.62(10)2049-2051(1998)