PD-149163 is a selective, brain penetrating Neurotensin NTR1 receptor agonist. Neurotensin agonists block the pre-pulse inhibition deficits produced by a 5-HT2A and an α1 agonist. As a result, PD-149163 shows pro-cognitive, anti-psychotic and anxiolytic effects.
SMTIN-P01 is a mitochondria-targeted Hsp90 inhibitor. It is made from the isopropyl amine of the Hsp90 inhibitor PU-H71 being replaced with the mitochondria-targeting moiety triphenylphosphonium.
AMK is an active metabolite of the neurohormone melatonin .1,2,3,4It is formed from melatoninviathe metabolic intermediate AFMK that is then deformylated by catalase or formamidase.5,6AMK scavenges singlet oxygenin vitrowhen used at a concentration of 200 μM.1It inhibits the epinephrine- and arachidonic acid-induced production of prostaglandin E2and PGD2in ovine seminal vesicle microsomes in a concentration- and time-dependent manner, as well as LPS-induced increases in COX-2 levels in RAW 264.7 macrophages when used at a concentration of 500 μM.2,3AMK (20 mg kg) decreases MPTP-induced increases in lipid peroxidation in the cytosol and mitochondria from substantia nigra and striatum in a mouse model of MPTP-induced Parkinson’s disease.4 1.Schaefer, M., and Hardeland, R.The melatonin metabolite N1-acetyl-5-methoxykynuramine is a potent singlet oxygen scavengerJ. Pineal Res.46(1)49-52(2009) 2.Kelly, R.W., Amato, F., and Seamark, R.F.N-acetyl-5-methoxy kynurenamine, a brain metabolite of melatonin, is a potent inhibitor of prostaglandin biosynthesisBiochem. Biophys. Res. Commun.121(1)372-379(1984) 3.Mayo, J.C., Sainz, R.M., Tan, D.-X., et al.Anti-inflammatory actions of melatonin and its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), in macrophagesJ. Neuroimmunol.165(1-2)139-149(2005) 4.Tapias, V., Escames, G., López, L.C., et al.Melatonin and its brain metabolite N1-acetyl-5-methoxykynuramine prevent mitochondrial nitric oxide synthase induction in parkinsonian miceJ. Neurosci. Res.87(13)3002-3010(2009) 5.Tan, D.-X., Manchester, L.C., Reiter, R.J., et al.Melatonin directly scavenges hydrogen peroxide: A potentially new metabolic pathway of melatonin biotransformationFree Radic. Biol. Med.29(11)1177-1185(2000) 6.Hirata, F., Hayaishi, O., Tokuyama, T., et al.In vitro and in vivo formation of two new metabolites of melatoninJ. Biol. Chem.249(4)1311-1313(1974)
Deltorphin II is a peptide agonist of δ2-opioid receptors.1,2It is selective for δ-opioid receptors over μ- and κ-opioid receptors in radioligand bindings assays (Kis = 0.0033, >1, and >1 μM, respectively) and induces [35S]GTPγS binding in mouse brain membrane preparations (EC50= 0.034 μM). Deltorphin II (0.12 mg kg) decreases the infarction zone:risk zone ratio in a rat model of myocardial ischemia-reperfusion injury induced by coronary occlusion, an effect that can be reversed by the δ2-opioid receptor antagonist naltriben but not the δ1-opioid receptor antagonist BNTX.3Intrathecal administration of deltorphin II (15 μg animal) increases latency to withdraw in the paw pressure and tail-flick tests in rats.4 1.Raynor, K., Kong, H., Chen, Y., et al.Pharmacological characterization of the cloned κ-, δ-, and μ-opioid receptorsMol. Pharm.45(2)330-334(1994) 2.Scherrer, G., Befort, K., Contet, C., et al.The delta agonists DPDPE and deltorphin II recruit predominantly mu receptors to produce thermal analgesia: A parallel study of mu, delta and combinatorial opioid receptor knockout miceEur. J. Neurosci.19(8)2239-2248(2004) 3.Maslov, L.N., Barzakh, E.I., Krylatov, A.V., et al.Opioid peptide deltorphin II simulates the cardioprotective effect of ischemic preconditioning: role of δ2-opioid receptors, protein kinase C, and KATP channelsBull. Exp. Biol. Med.149(5)591-593(2010) 4.Labuz, D., Toth, G., Machelska, H., et al.Antinociceptive effects of isoleucine derivatives of deltorphin I and deltorphin II in rat spinal cord: A search for selectivity of delta receptor subtypesNeuropeptides32(6)511-517(1998)
NG 25 is a type II kinase inhibitor that inhibits MAP4K2 and TAK1 (IC50s = 21.7 and 149 nM, respectively).1It also inhibits the Src family kinases Src and LYN (IC50s = 113 and 12.9 nM, respectively) and Abl family kinases (IC50s = 75.2 nM), as well as CSK, FER, and p38α (IC50s = 56.4, 82.3, and 102 nM, respectively). NG 25 (100 nM) prevents TNF-α-induced IKKα/β phosphorylation and IκB-α degradation in L929 cells. It inhibits secretion of IFN-α and IFN-β induced by CpG type B and CL097, respectively, in Gen2.2 cells in a concentration-dependent manner.2NG 25 decreases cell viability of HCT116KRASWT, and to a greater degree of HCT116KRASG13D, colorectal cancer cells in a concentration-dependent manner.3It also reduces tumor growth and increases the number of TUNEL-positive tumor cells in a CT26KRASG12Dmouse orthotopic model of colorectal cancer. 1.Tan, L., Nomanbhoy, T., Gurbani, D., et al.Discovery of type II inhibitors of TGFβ-activated kinase 1 (TAK1) and mitogen-activated protein kinase kinase kinase kinase 2 (MAP4K2)J. Med. Chem.58(1)183-196(2015) 2.Pauls, E., Shpiro, N., Peggie, M., et al.Essential role for IKKβ in production of type 1 interferons by plasmacytoid dendritic cellsJ. Biol. Chem. 287(23)19216-19228(2012) 3.Ma, Q., Gu, L., Liao, S., et al.NG25, a novel inhibitor of TAK1, suppresses KRAS-mutant colorectal cancer growth in vitro and in vivoApoptosis24(1-2)83-94(2019)