购物车
  • 全部删除
  • TargetMol
    您的购物车当前为空
筛选
已筛选:全部清除
TargetMol | Tags 通过 靶点 筛选
  • Antibacterial
    (1)
  • Others
    (4)
TargetMol | Tags 通过 货期 筛选
  • 现货
    (1)
  • 35日内发货
    (2)
  • 6-8周
    (1)
抑制剂&激动剂
细分筛选
搜索结果
TargetMol产品目录中 "d homoserine lactone"的结果
筛选
搜索结果
TargetMol产品目录中 "

d homoserine lactone

"的结果
  • 抑制剂&激动剂
    5
    TargetMol | Inhibitors_Agonists
  • 天然产物
    1
    TargetMol | Natural_Products
  • D-Homoserine lactone
    T3639651744-82-2
    D-homoserine lactone is an enantiomer of L-homoserine lactone and an inhibitor of serine hydroxymethyltransferase (SHMT; Ki= 11 mM for the rabbit enzyme).1 1.Wang, E.A., Kallen, R., and Walsh, C.Mechanism-based inactivation of serine transhydroxymethylases by D-fluoroalanine and related amino acidsJ. Biol. Chem.256(13)6917-6926(1981)
    • ¥ 10600
    6-8周
    规格
    数量
  • N-(Ketocaproyl)-DL-homoserine lactone
    N-(Ketocaproyl)-D,L-homoserine lactone, N-(3-氧代己酰)-DL-高丝氨酸内酯
    T1622676924-95-3
    N-(Ketocaproyl)-DL-homoserine lactone 是群体感应自动诱导剂。它是 LuxR 的天然配体。
    • ¥ 158
    In stock
    规格
    数量
    TargetMol | Inhibitor Sale
  • N-cis-hexadec-9Z-enoyl-L-Homoserine lactone
    N-(2-oxotetrahydrofuran-3S-yl) Palmitoleyl Amide,N-cis-hexadec-9Z-enoyl-L-Homoserine lactone
    T37736479050-94-7
    Quorum sensing is a regulatory process used by bacteria for controlling gene expression in response to increasing cell density.[1] This regulatory process manifests itself with a variety of phenotypes including biofilm formation and virulence factor production.[2] Coordinated gene expression is achieved by the production, release, and detection of small diffusible signal molecules called autoinducers. The N-acylated homoserine lactones (AHLs) comprise one such class of autoinducers, each of which generally consists of a fatty acid coupled with homoserine lactone (HSL). AHLs vary in acyl group length (C4-C18), in the substitution of C3 (hydrogen, hydroxyl, or oxo group) and in the presence or absence of one or more carbon-carbon double bonds in the fatty acid chain. These differences confer signal specificity through the affinity of transcriptional regulators of the LuxR family.[3] C16:1-Δ9-(L)-HSL is a long-chain AHL that functions as a quorum sensing signaling molecule in strains of S. meliloti.[4],[5],[6],[7] Regulating bacterial quorum sensing signaling can be used to inhibit pathogenesis and thus, represents a new approach to antimicrobial therapy in the treatment of infectious diseases.[8] Reference:[1]. González, J.E., and Keshavan, N.D. Messing with bacterial quorum sensing. Microbiol. Mol. Biol. Rev. 70(4), 859-875 (2006).[2]. Gould, T.A., Herman, J., Krank, J., et al. Specificity of acyl-homoserine lactone syntheses examined by mass spectrometry. J. Bacteriol. 188(2), 773-783 (2006).[3]. Penalver, C.G.N., Morin, D., Cantet, F., et al. Methylobacterium extorquens AM1 produces a novel type of acyl-homoserine lactone with a double unsaturated side chain under methylotrophic growth conditions. FEBS Lett. 580(2), 561-567 (2006).[4]. Teplitski, M., Eberhard, A., Gronquist, M.R., et al. Chemical identification of N-acyl homoserine lactone quorum-sensing signals produced by Sinorhizobium meliloti strains in defined medium. Archives of Microbiology 180, 494-497 (2003).[5]. Gao, M., Chen, H., Eberhard, A., et al. sinI- and expR-dependent quorum sensing in Sinorhizobium meliloti. Journal of Bacteriology 187(23), 7931-7944 (2005).[6]. Marketon, M.M., Glenn, S.A., Eberhard, A., et al. Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti. Journal of Bacteriology 185(1), 325-331 (2003).[7]. Marketon, M., Gronquist, M.R., Eberhard, A., et al. Characterization of the Sinorhizobium meliloti sinR sinI locus and the production of novel N-Acyl homoserine lactones. Journal of Bacteriology 184(20), 5686-5695 (2002).[8]. Cegelski, L., Marshall, G.R., Eldridge, G.R., et al. The biology and future prospects of antivirulence therapies. Nat. Rev. Microbiol. 6(1), 17-27 (2008).
    • 待估
    35日内发货
    规格
    数量
  • N-hexadecanoyl-L-Homoserine lactone
    N-palmitoyl-L-Homoserine, N-hexadecanoyl-L-Homoserine lactone, C16-HSL
    T3774187206-01-7
    Quorum sensing is a regulatory system used by bacteria for controlling gene expression in response to increasing cell density.[1] This regulatory process manifests itself with a variety of phenotypes including biofilm formation and virulence factor production.[2] Coordinated gene expression is achieved by the production, release, and detection of small diffusible signal molecules called autoinducers. The N-acylated homoserine lactones (AHLs) comprise one such class of autoinducers, each of which generally consists of a fatty acid coupled with homoserine lactone (HSL). Regulation of bacterial quorum sensing signaling systems to inhibit pathogenesis represents a new approach to antimicrobial therapy in the treatment of infectious diseases.[3] AHLs vary in acyl group length (C4-C18), in the substitution of C3 (hydrogen, hydroxyl, or oxo group), and in the presence or absence of one or more carbon-carbon double bonds in the fatty acid chain. These differences confer signal specificity through the affinity of transcriptional regulators of the LuxR family.[4] C16-HSL is one of a number of lipophilic, long acyl side-chain bearing AHLs, including its monounsaturated analog C16:1-(L)-HSL, produced by the LuxI AHL synthase homolog SinI involved in quorum-sensing signaling in S. meliloti, a nitrogen-fixing bacterial symbiont of certain legumes.[5],[6] C16-HSL is the most abundant AHL produced by the proteobacterium R. capsulatus and activates genetic exchange between R. capsulatus cells.[7] N-Hexadecanoyl-L-homoserine lactone and other hydrophobic AHLs tend to localize in relatively lipophilic cellular environments of bacteria and cannot diffuse freely through the cell membrane. The long-chain N-acylhomoserine lactones may be exported from cells by efflux pumps or may be transported between communicating cells by way of extracellular outer membrane vesicles.[8],[9]Reference:[1]. González, J.E., and Keshavan, N.D. Messing with bacterial quorum sensing Microbiol. Mol. Biol. Rev. 70(4), 859-875 (2006).[2]. Gould, T.A., Herman, J., Krank, J., et al. Specificity of acyl-homoserine lactone syntheses examined by mass spectrometry Journal of Bacteriology 188(2), 773-783 (2006).[3]. Cegelski, L., Marshall, G.R., Eldridge, G.R., et al. The biology and future prospects of antivirulence therapies Nature Reviews.Microbiology 6(1), 17-27 (2008).[4]. Penalver, C.G.N., Morin, D., Cantet, F., et al. Methylobacterium extorquens AM1 produces a novel type of acyl-homoserine lactone with a double unsaturated side chain under methylotrophic growth conditions FEBS Letters 580, 561-567 (2006).[5]. Gao, M., Chen, H., Eberhard, A., et al. sinI- and expR-dependent quorum sensing in Sinorhizobium meliloti Journal of Bacteriology 187(23), 7931-7944 (2005).[6]. Teplitski, M., Eberhard, A., Gronquist, M.R., et al. Chemical identification of N-acyl homoserine lactone quorum-sensing signals produced by Sinorhizobium meliloti strains in defined medium Archives of Microbiology 180, 494-497 (2003).[7]. Schaefer, A.L., Taylor, T.A., Beatty, J.T., et al. Long-chain acyl-homoserine lactone quorum-sensing regulation of Rhodobacter capsulatus gene transfer agent production Journal of Bacteriology 184(23), 6515-6521 (2002).[8]. Pearson, J.P., Van Delden, C., and Iglewski, B.H. Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals Journal of Bacteriology 181(4), 1203-1210 (1999).[9]. Mashburn-Warren, L., and Whiteley, M. Special delivery: Vesicle trafficking in prokaryotes Molecular Microbiology 61(4), 839-846 (2006).
    • ¥ 665
    35日内发货
    规格
    数量
  • Aculene D
    T754482043948-38-3
    Aculene D, 一种真菌代谢物,针对Chromobacterium violaceum CV026表现出群体感应(QS)抑制活性。该化合物能在亚抑制浓度下,显著削减由N-己酰基-l-高丝氨酸内酯(C6-HSL)触发的C. violaceum CV026培养物中紫罗兰素的产生。
    • 待询
    规格
    数量