GBA Protein, Mouse, Recombinant (His) is expressed in yeast with N-6xHis tag. The predicted molecular weight is 57.5 kDa and the accession number is P17439.
GBA2 Protein, Rat, Recombinant (His) is expressed in E. coli expression system with C-6xHis tag. The predicted molecular weight is 42.6 kDa and the accession number is Q5M868.
Glucosylceramidase that catalyzes, within the lysosomal compartment, the hydrolysis of glucosylceramide GlcCer into free ceramide and glucose. Thereby, plays a central role in the degradation of complex lipids and the turnover of cellular membranes. Through the production of ceramides, participates in the PKC-activated salvage pathway of ceramide formation. Also plays a role in cholesterol metabolism. May either catalyze the glucosylation of cholesterol, through a transglucosylation reaction that transfers glucose from glucosylceramide to cholesterol. The short chain saturated C8:0-GlcCer and the mono-unsaturated C18:0-GlcCer being the most effective glucose donors for that transglucosylation reaction. Under specific conditions, may alternatively catalyze the reverse reaction, transferring glucose from cholesteryl-beta-D-glucoside to ceramide. Finally, may also hydrolyze cholesteryl-beta-D-glucoside to produce D-glucose and cholesterol.
Glucosylceramidase that catalyzes, within the lysosomal compartment, the hydrolysis of glucosylceramide GlcCer into free ceramide and glucose. Thereby, plays a central role in the degradation of complex lipids and the turnover of cellular membranes. Through the production of ceramides, participates in the PKC-activated salvage pathway of ceramide formation. Also plays a role in cholesterol metabolism. May either catalyze the glucosylation of cholesterol, through a transglucosylation reaction that transfers glucose from glucosylceramide to cholesterol. The short chain saturated C8:0-GlcCer and the mono-unsaturated C18:0-GlcCer being the most effective glucose donors for that transglucosylation reaction. Under specific conditions, may alternatively catalyze the reverse reaction, transferring glucose from cholesteryl-beta-D-glucoside to ceramide. Finally, may also hydrolyze cholesteryl-beta-D-glucoside to produce D-glucose and cholesterol.