Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are newly identified endogenous lipids regulated by fasting and high-fat feeding and associated with insulin sensitivity. Structurally, these esters are comprised of a C-16 or C-18 fatty acid (e.g., palmitoleic, palmitic, oleic, or stearicacid) linked to a hydroxylated C-16 or C-18 lipid. 9-PAHSA is a FAHFA in which palmitic acid is esterified to 9-hydroxystearicacid. PAHSAs are the most abundant forms of FAHFA in serum as well as white and brown adipose tissues of glucose tolerant AG4OX mice, which overexpress Glut4 specifically in adipose tissue. 9-PAHSA is the predominant isomer of PAHSA in wild type and AG4OX mice. It is found in humans and is reduced in the serum and adipose tissues of insulin-resistant humans. 9-PAHSA improves glucose tolerance, stimulates insulin secretion, and has anti-inflammatory effects in mice.
Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are a class of endogenous lipids whose levels are modulated by fasting and high-fat diets, and they play a role in insulin sensitivity. These compounds consist of a fatty acid—either a C-16 or C-18, such as palmitoleic, palmitic, oleic, or stearicacid—esterified to a hydroxylated C-16 or C-18 lipid. One notable FAHFA, 9-PAHSA, features an ester linkage between palmitic acid and 9-hydroxystearicacid. PAHSAs, with 9-PAHSA being the most prevalent isomer, are significantly found in the serum and both white and brown adipose tissues of glucose-tolerant AG4OX mice, which express the Glut4 gene in adipose tissue, enhancing insulin sensitivity. Additionally, 9-PAHSA is abundant in wild type and AG4OX mice and present in humans, though at reduced levels in those with insulin resistance. 9-PAHSA is associated with improved glucose tolerance, enhanced insulin secretion, and anti-inflammatory effects in mice. The compound 19-PAHSA^13C4 represents an isotopically enriched form of this polyunsaturated fatty acid.
Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are a class of endogenous lipids whose levels are modulated by fasting and high-fat diets and are linked to insulin sensitivity. These compounds typically consist of a C-16 or C-18 fatty acid, such as palmitoleic, palmitic, oleic, or stearicacid, esterified to a hydroxylated C-16 or C-18 lipid. One specific form of FAHFA, known as 9-OAHSA, involves the esterification of oleic acid to 9-hydroxystearicacid. Within the FAHFA family, OAHSAs notably represent the predominant form found in the serum of glucose-tolerant AG4OX mice, which uniquely overexpress the Glut4 glucose transporter in adipose tissue.
Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are recent discoveries in endogenous lipids that are influenced by dietary changes such as fasting and high-fat diets, showing a link with enhanced insulin sensitivity in mice. These compounds typically feature a C-16 or C-18 fatty acid (e.g., palmitoleic, palmitic, oleic, or stearicacid) bound to a hydroxy group on another C-16 or C-18 fatty chain. A specific FAHFA, 9-POHSA, consists of palmitoleic acid connected at the hydroxystearicacid’s 9th position. This molecule, in particular, exhibits notably increased levels in the serum of glucose-tolerant AG4OX mice, which express the Glut4 glucose transporter predominantly in their adipose tissue. Given the broader family of FAHFAs' roles in enhancing glucose tolerance, promoting insulin secretion, and exerting anti-inflammatory effects, 9-POHSA emerges as a potential bioactive lipid involved in managing metabolic syndrome and inflammation.
Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are lipids that are modulated by dietary changes such as fasting and high-fat diets, and they play a role in insulin sensitivity. These compounds generally consist of a fatty acid chain of either 16 or 18 carbons (for example, palmitoleic, palmitic, oleic, or stearicacid) esterified to a similarly long hydroxy fatty acid. One specific FAHFA, 9-SAHSA, features stearicacid esterified at the 9th carbon of hydroxystearicacid. The concentration of 9-SAHSA is notably increased in the serum of glucose-tolerant AG4OX mice, which specifically express the Glut4 glucose-transporting protein in adipose tissue.