Advanced glycation end products (AGEs) are compounds formed by non-enzymatic chemical reactions following the bonding of sugars to proteins or lipids during diabetes, uremia, aging, rheumatic arthritis, and other conditions. A receptor for the AGEs (RAGE) binds certain members of this class to initiate cell signaling.[1][2] Pentosidine is a well-characterized natural AGE that is often used as a biomarker for the production of all AGEs. While pentosidine can be measured in urine, the majority of this AGE is catabolized before excretion.[3] Reference:[1]. Neeper, M., Schmidt, A.M., Brett, J., et al. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. The Journal of Biological Chemisty 267(21), 14998-15004 (1992).[2]. Brett, J., Schmidt, A.M., Yan, S.D., et al. Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues. American Journal of Pathology 143(6), 1699-1712 (1993).[3]. Miyata, T., Ueda, Y., Horie, K., et al. Renal catabolism of advanced glycation end products: The fate of pentosidine. Kidney International 53, 416-422 (1998).
12(S)-HETE is a product of arachidonic acid metabolism through the 12-lipoxygenase pathway. It is primarily found in platelets, leukocytes, and to a lesser extent in smooth muscle cells. It enhances tumor cell adhesion to endothelial cells, fibronectin, and the subendothelial matrix. tetranor-12(S)-HETE is the major β-oxidation product resulting from peroxisomal metabolism of 12(S)-HETE in numerous tissues, and Lewis lung carcinoma cells. No biological function has yet been determined for tetranor-12(S)-HETE. Some data indicate it may play a role in controlling the inflammatory response in injured corneas. In some diseases (e.g., Zellweger's Syndrome) peroxisomal abnormalities result in the inability of cells to metabolize 12(S)-HETE, which may be responsible for symptoms of the disease. The tetranor derivative of 12(S)-HETE is available as a research tool for the elucidation of the metabolic fate of its parent compound.