CTP499, a selective PDE inhibitor, and the deuterium-containing agent is an HDX analogue and a metabolite of hexantheobromine that slows the progression of type 2 diabetic nephropathy in patients with macroalbuminuria.
3-Hydroxyterphenyllin is a p-terphenyl fungal metabolite originally isolated from A. candidus that has diverse biological activities, including antioxidant, antiproliferative, antibacterial, and antiviral properties.1,2,3,4 It has a 96% scavenging effect on 2,2-diphenyl-1-picrylhydrazyl radicals when used at a concentration of 100 μg/ml.2 3-Hydroxyterphenyllin inhibits the growth of HeLa cervical, A549 lung, and HepG2 liver cancer cells (IC50s = 23, 36, and 32 μM, respectively), as well as methicillin-resistant S. aureus (MRSA) and V. vulnificus bacteria (MIC = 31 μg/ml for both).3 It also inhibits HIV-1 integrase in both coupled and strand transfer assays (IC50s = 2.8 and 12.1 μM, respectively).4References1. Kurobane, I., Vining, L.C., McInnes, A.G., et al. 3-Hydroxyterphenyllin, a new metabolite of Aspergillus candidus. Structure elucidation by 1H and 13C nuclear magnetic resonance spectroscopy. J. Antibiot. (Tokyo) 32(6), 559-564 (1979).2. Yen, G.-C., Chang, Y.-C., Sheu, F., et al. Isolation and characterization of antioxidant compounds from Aspergillus candidus broth filtrate. J. Agric. Food Chem. 49(3), 1426-1431 (2001).3. Wang, W., Liao, Y., Tang, C., et al. Cytotoxic and antibacterial compounds from the coral-derived fungus Aspergillus tritici SP2-8-1. Mar. Drugs 15(11), E348 (2017).4. Singh, S.B., Jayasuriya, H., Dewey, R., et al. Isolation, structure, and HIV-1-integrase inhibitory activity of structurally diverse fungal metabolites. J. Ind. Microbiol. Biotechnol. 30(12), 721-731 (2003). 3-Hydroxyterphenyllin is a p-terphenyl fungal metabolite originally isolated from A. candidus that has diverse biological activities, including antioxidant, antiproliferative, antibacterial, and antiviral properties.1,2,3,4 It has a 96% scavenging effect on 2,2-diphenyl-1-picrylhydrazyl radicals when used at a concentration of 100 μg/ml.2 3-Hydroxyterphenyllin inhibits the growth of HeLa cervical, A549 lung, and HepG2 liver cancer cells (IC50s = 23, 36, and 32 μM, respectively), as well as methicillin-resistant S. aureus (MRSA) and V. vulnificus bacteria (MIC = 31 μg/ml for both).3 It also inhibits HIV-1 integrase in both coupled and strand transfer assays (IC50s = 2.8 and 12.1 μM, respectively).4 References1. Kurobane, I., Vining, L.C., McInnes, A.G., et al. 3-Hydroxyterphenyllin, a new metabolite of Aspergillus candidus. Structure elucidation by 1H and 13C nuclear magnetic resonance spectroscopy. J. Antibiot. (Tokyo) 32(6), 559-564 (1979).2. Yen, G.-C., Chang, Y.-C., Sheu, F., et al. Isolation and characterization of antioxidant compounds from Aspergillus candidus broth filtrate. J. Agric. Food Chem. 49(3), 1426-1431 (2001).3. Wang, W., Liao, Y., Tang, C., et al. Cytotoxic and antibacterial compounds from the coral-derived fungus Aspergillus tritici SP2-8-1. Mar. Drugs 15(11), E348 (2017).4. Singh, S.B., Jayasuriya, H., Dewey, R., et al. Isolation, structure, and HIV-1-integrase inhibitory activity of structurally diverse fungal metabolites. J. Ind. Microbiol. Biotechnol. 30(12), 721-731 (2003).
DCVC inhibits pathogen-stimulated TNF-α in human extra placental membranes in vitro.Target: TNF-αin vitro: DCVC inhibits pathogen stimulated cytokine release from tissue punch cultures. DCVC (5-50 μM) significantly inhibits LTA-, LPS-, and GBS-stimulated cytokine release from tissue cultures as early as 4 h (P ≤ 0.05). In contrast, TCA (up to 500 μM) does not inhibit LTA-stimulated cytokine release from tissue punches. DCVC effects on LTA-stimulated and LPS-stimulated TNF-α release from tissue punch cultures of extraplacental membranes. DCVC effects on GBS-stimulated release of pro-inflammatory cytokines from extraplacental membranes in transwell cultures. [1]. Boldenow E, et al. The trichloroethylene metabolite S-(1,2-dichlorovinyl)-l-cysteine but not trichloroacetate inhibits pathogen-stimulated TNF-α in human extraplacental membranes in vitro. Reprod Toxicol. 2015 Apr;52:1-6. [2]. Lash LH, et al. Multigenerational study of chemically induced cytotoxicity and proliferation in cultures of human proximal tubular cells. Int J Mol Sci. 2014 Nov 18;15(11):21348-65. [3]. Yoo HS, et al. Comparative analysis of the relationship between trichloroethylene metabolism and tissue-specific toxicity among inbred mouse strains: kidney effects. J Toxicol Environ Health A. 2015;78(1):32-49.
Rec 15/2615 is an antagonist of α1B-adrenergic receptors (α1B-ARs; Ki = 0.45 nM for the recombinant human receptor).1 It selectively inhibits α1B-ARs over α1A-, α1D-, and α1L-ARs (Kis = 7.59, 10.23, and 49 nM, respectively). Rec 15/2615 inhibits norepinephrine-induced contractions of isolated rabbit prostate and urethral strips (Kis = 100 and 316.2 nM, respectively), as well as reduces norepinephrine-induced contractions of chloroethylclonidine-precontracted isolated rabbit aortic rings (Ki = 50 nM).2 It decreases diastolic blood pressure (ED25 = 183 μg/kg, i.v.) and increases intracavernous pressure in anesthetized dogs when administered intracavernously at doses ranging from 30 and 1,000 μg/kg.1,2 |1. Sironi, G., Colombo, D., Poggesi, E., et al. Effects of intracavernous administration of selective antagonists of α1-adrenoceptor subtypes on erection in anesthetized rats and dogs. J. Pharmacol. Exp. Ther. 292(3), 974-981 (2000).|2. Testa, R., Guarneri, L., Angelico, P., et al. Pharmacological characterization of the uroselective alpha-1 antagonist Rec 15/2739 (SB 216469): Role of the alpha-1L adrenoceptor in tissue selectivity, part II. J. Pharmacol. Exp. Ther. 281(3), 1284-1293 (1997).